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Abstract

This paper summarizes recent research on competition-based learning
procedures performed by the Navy Center for Applied Research in Artificial
Intelligence at the Naval Research Laboratory. We have focused on a partic-
ularly interesting class of competition-based techniques called genetic algo-
rithms. Genetic algorithms are adaptive search algorithms based on princi-
ples derived from the mechanisms of biological evolution. Recent results on
the analysis of the implicit parallelism of alternative selection algorithms are
summarized, along with an analysis of alternative crossover operators.
Applications of these results in practical learning systems for sequential
decision problems and for concept classification are also presented.

INTRODUCTION

One approach to the design of more flexible computer systems is to extract
heuristics from existing adaptive systems. We have focused on a class of
learning systems that use competition-based procedures, called genetic algo-
rithms (GAs). GAs are based on principles derived from one of the most
impressive examples of adaptation available: the adaptation achieved by
natural systems to their environment through the mechanisms of biological
evolution. The principles were first elucidated in a computational frame-
work by John Holland (1975). Holland’s analysis of natural adaptive sys-
tems shows that biological evolution embodies a sophisticated kind of
generate-and-test strategy that rapidly identifies and exploits regularities in
________________
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the environment. By extracting these processes from the specific context of
genetics, the algorithms can be applied to a wide range of optimization and
learning problems. GAs have in fact been applied successfully to routing
and scheduling problems, machine vision, engineering design optimization,
gas pipeline control systems, and others. In the area of machine learning,
GAs have been used to learn rules for sequential decision problems as well
as to learn classification rules from examples (De Jong, 1990). GAs have
also been widely used for learning both the topology and the weights of
neural nets.

Our research efforts for the past few years have fallen into two main
categories: the analysis of genetic algorithms, and the application of genetic
algorithms to machine learning problems. This article will focus primarily
on recent progress in the analysis of genetic algorithms. The remainder of
the article is organized as follows: The next section contains a brief tutorial
on genetic algorithms. This is followed by two sections that outline recent
progress in the analysis of two fundamental topics in the field: how
knowledge structures are selected for reproduction, and how the selected
structures are recombined to create new plausible knowledge structures.
These sections are followed by a brief overview of our work in developing
machine learning systems based on genetic algorithms. The final section
describes the directions of current work.

OVERVIEW OF GENETIC ALGORITHMS

Genetic algorithms are adaptive search procedures based on principles
derived from the dynamics of natural population genetics. GAs are dis-
tinguished from other search methods by the following features:

• A population of structures that can be interpreted as candidate
solutions to the given problem.

• The competitive selection of structures for reproduction, based
on each structure’s fitness as a solution to the given problem.

• Idealized genetic operators that alter the selected structures in
order to create new structures for further testing.

These features enable the GA to exploit the accumulating knowledge
obtained during the search in such a way as to achieve an efficient balance
between the need to explore new areas of the search space and the need to
focus on high performance regions of the space. This section provides a
general overview of a simple form of genetic algorithm. For more detailed



procedure GA
begin

t = 0;
initialize P(t);
evaluate structures in P(t);
while termination condition not satisfied do
begin

t = t + 1;
select P(t) from P(t-1);
alter structures in P(t);
evaluate structures in P(t);

end
end.

Figure 1: A Genetic Algorithm

discussions, see (Holland, 1975; Goldberg, 1989).

A genetic algorithm simulates the dynamics of population genetics by
maintaining a knowledge base of structures that evolves over time in
response to the observed performance of its structures in their operational
environment. A specific interpretation of each structure (e.g. as a collection
of parameter settings, a condition/action rule, etc.) yields a point in the space
of alternative solutions to the problem at hand, which can then be subjected
to an evaluation process and assigned a measure called its fitness, reflecting
its potential worth as a solution. The search proceeds by repeatedly select-
ing structures from the current knowledge base on the basis of fitness and
applying idealized genetic search operators to these structures to produce
new structures (offspring) for evaluation. The basic paradigm is shown in
Figure 1, and is explained in more detail below.

At iteration t, the GA maintains a population of structures P (t)
representing candidate solutions to the given problem. Population P (0) may
be initialized using whatever knowledge is available about possible solu-
tions. In the absence of such knowledge, the initial population should
represent a random sample of the search space. Each structure is evaluated
and assigned a measure of its fitness as a solution to the problem at hand.
When each structure in the population has been evaluated, a new population
of structures is formed in two steps. First, structures in the current



population are selected to be reproduced on the basis of their relative fitness.
That is, high performing structures may be chosen several times for replica-
tion and poorly performing structures may not be chosen at all. In the
absence of any other mechanisms, the resulting selective pressure would
cause the best performing structures in the initial knowledge base to occupy
a larger and larger proportion of the knowledge base over time.

Next the selected structures are altered using idealized genetic opera-
tors to form a new set of structures for evaluation. The primary genetic
search operator is the crossover operator, which combines the features of
two parent structures to form two similar offspring. There are many possible
forms of crossover. The simplest version operates by swapping correspond-
ing segments of a string or list representation of the parents. For example, if
the parents are represented by the lists:

(a1 a2 a3 a4 a5)  and  (b1 b2 b3 b4 b5)

then crossover might produce the offspring

(a1 a2 b3 b4 b5)  and  (b1 b2 a3 a4 a5).

Other forms of crossover operators have been defined for other representa-
tions (e.g., Whitley et al, 1989; Koza, 1989; Grefenstette, 1991b). Specific
decisions as to whether both resulting structures are to be entered into the
knowledge base, whether the precursors are to be retained, and which other
structures, if any, are to be purged define a range of alternative implementa-
tions.

The crossover operator usually draws only on the information present in
the structures of the current knowledge base in generating new structures for
testing. If specific information is missing, due to storage limitations or loss
incurred during the selection process of a previous iteration, then crossover
is unable to produce new structures that contain it. A mutation operator,
which alters one or more components of a selected structure, provides the
means for introducing new information into the knowledge base. Again, a
wide range of mutation operators have been proposed, ranging from com-
pletely random alterations to more heuristically motivated local search
operators. In most cases, mutation serves as a secondary search operator that
ensures the reachability of all points in the search space.

The power of the GA lies not in the testing of individual structures but
in the efficient exploitation of the wealth of information that the testing of
structures provides with regards to the interactions among the components
comprising these structures. Specific configurations of component values



observed to contribute to good performance (e.g. a specific pair of parameter
settings, a specific group of rule conditions, etc.) are preserved and pro-
pagated through the structures in the knowledge base in a highly parallel
fashion. This, in turn, forms the basis for subsequent exploitation of larger
and larger such configurations. Intuitively, we can view these structural
configurations as the regularities in the space that emerge as individual struc-
tures are generated and tested. Once encountered, they serve as building
blocks in the generation of new structures. That is, GAs actually search the
space of all feature combinations, quickly identifying and exploiting combi-
nations that are associated with high performance. The ability to perform
such a search on the basis of the evaluation of completely specified candi-
date solutions is called the implicit parallelism of GAs.

To summarize, the power of a GA derives from its ability to exploit, in a
near-optimal fashion, information about the utility of a very large number of
structural configurations without the computational burden of explicit calcu-
lation and storage. This leads to a focused exploration of the search space
wherein attention is concentrated in regions that contain structures of above
average utility. The knowledge base, nonetheless, is widely distributed over
the space, insulating the search from susceptibility to stagnation at a local
optima.

A great variety of genetic algorithms have been studied and compared.
Often these comparisons take the form of empirical studies, but the general-
ity of the results are often difficult to assess, since they usually depend on the
particular characteristics of the search space. More analytic tools for com-
parison need to be developed. Our recent efforts have included new analyses
of the fundamental components of genetic algorithms: the rules for selecting
knowledge structures for reproduction, and the effects of various crossover
operators. The following two sections describe our progress on these two
topics.

ANALYSIS OF SELECTION ALGORITHMS

One way to improve our understanding of genetic algorithms is to identify
properties that are invariant across the many seemingly different versions of
the algorithms. (Grefenstette, 1991a) focuses on invariances among genetic
algorithms that differ along two dimensions: (1) the way the user-defined
objective function is mapped to a fitness measure, and (2) the way the fitness
measure is used to assign offspring to parents. The remainder of this section
summarizes those results.



The process of reproducing knowledge structures in a genetic algorithm
can be decomposed into four steps. First, each structure x is evaluated
according to an objective function u(x) that defines problem-specific criterion
for success. Second, a fitness function is applied to the result of the evalua-
tion to obtain f (x), the fitness of x. The range of f must be a non-negative
interval, and larger values of f (x) indicate more desirable solutions to the
objective function.2 Third, a selection algorithm assigns a target number of
offspring to each population member. Finally, a probabilistic sampling algo-
rithm assigns to each member of the population an integer number of
offspring. The first step is, of course, entirely problem dependent, and will
not concern us further. For the final step, several sampling algorithms have
been investigated, culminating in one called stochastic universal sampling
by Baker (1987), which appears to provide an optimal sampling method.
Accordingly, variations on the sampling algorithm will not concern us
further. That leaves the middle two steps open for variations, and in fact,
many variations are in current use. A short discussion of some of the major
variants of fitness functions and selection algorithms will give a fair indica-
tion of the range of possibilities.

The fitness function maps the raw score of the objective function to a
non-negative interval. Such a mapping is always necessary if the goal is to
minimize the objective function, since higher fitness values correspond to
lower objective function values in that case. More generally, the fitness
function often serves to scale the raw values returned by the objective func-
tion in order to provide a high level of selective pressure. Scaling that
accentuates small differences is especially desirable late in the search, when
the variance in objective performance tends to diminish. One popular
approach to scaling (Grefenstette, 1986) is to define the fitness function as a
dynamic, linear transformation of the objective value:

f (x) = a(u (x) − b (t))

where a is positive for maximization problems and negative for minimiza-
tion problems, and b (t) represents the worst value seen in the last few gen-
erations. The trajectory of b (t) generally rises over time, providing greater
________________

2 This notation is at variance with that used in (Grefenstette, 1991a). The mnemonic here
is that f (x ) denotes the fitness, and u (x ) denotes the user-defined utility (e.g., cost to be
minimized or profit to be maximized). The notation was reversed in (Grefenstette, 1991a).
We hope that standard notation may be adopted soon, but in the meantime, this paper will use
the more intuitive notation.



selection pressure later in the search. This method is sensitive, however, to
"lethals", i.e., poor performing individuals that may occasionally arise
through crossover or mutation. A more robust method has been called sigma
scaling (Goldberg, 1989):

f (x) = u (x) − (µ − c * σ)  if  u (x) > (µ − c * σ)

f (x) = 0 ,  otherwise.

where µ is the mean objective function value of the current population and σ
is the current population standard deviation. Sigma scaling provides a level
of selective pressure that is sensitive to the spread of performance values in
the population. Besides these two forms of fitness functions, many other
variations have been proposed and implemented (Goldberg, 1989). We next
consider variations in the selection phase.

The selection algorithm assigns an expected number of children C (x) to
each population member x, based on the fitness values. The most widely
used method is proportional selection, defined as:

C (x) = f (x) / f
_

where f
_

is the average fitness of the current population. This method was
originally proposed and analyzed by Holland, who showed that it results in a
nearly-optimal allocation of trials, under certain circumstances (Holland,
1975). In practice, this selection algorithm may lead to premature conver-
gence, based on the unlimited number of offspring that may be assigned to
"super individuals" that may arise early in a search (Baker, 1989). Other
forms of selection are less brittle in this respect. For example, rank-based
selection assigns offspring according to the formula:

C (x) = a + b * rank (x)

where rank (x) indicates the relative position of x in the population, from 0
for the worst performer to 1 for the best, and a and b are constants chosen so
that a is the minimum number of offsping and a+b is the maximum. Rank-
based selection eliminates the problem of premature convergence to "super
individuals" by providing a strict upper bound on the number of offspring
assigned to any one member in a given generation. In practice, rank-based
selection tends to provide a slower, steady rate of convergence than propor-
tional selection. A final example is threshold selection in which all popula-
tion members whose objective function falls below a (possibly time-varying)
threshold are deleted, and the survivers are assigned an equal number of
offspring to fill the vacated slots. These three examples should give an



indication of the range of selection algorithms that have been explored in
genetic algorithms. Understanding the similarities and differences between
these options is a fundamental step toward a deeper understanding of genetic
algorithms.

Given these two dimensions of variations in the design of genetic algo-
rithms, we say that a genetic algorithm is admissible if it meets what appear
to be the weakest reasonable requirements along these dimensions. We can
then show that any admissible genetic algorithm exhibits a form of implicit
parallelism, meaning that it allocates search effort in way that differentiates
among a large number of competing areas of the search space on the basis of
a limited number of explicit evaluations of knowledge structures. These
results provide a sense of coherence to the field, in that commonalities are
exposed among superficially different versions of the genetic algorithm.
These results can also serve to spotlight the features which distinguish broad
classes of genetic algorithms from one another.

A few definitions are required to make these ideas concrete. We say
that a fitness function is monotonic if

f (x) ≤ f (y)   iff   u (x) ≤ u (y)

A fitness function is strictly monotonic if it is monotonic and

if   u (x) < u (y)   then   f (x) < f (y)

That is, a monotonic fitness function does not reverse the sense of any pair-
wise ranking provided by the objective function. A strictly monotonic
fitness function preserves the relative ranking of any two points in the search
space with distinct objective function values. Referring to the examples
mentioned earlier, the linear dynamic fitness function is strictly monotonic,
but sigma scaling is monotonic but not strict, since it may assign zero fitness
to knowledge structures that have different objective function values. A
selection algorithm is monotonic if

C (x) ≤ C (y)   iff   f (x) ≤ f (y)

A selection algorithm is strictly monotonic if it is monotonic and

if   f (x) < f (y)   then   C (x) < C (y)

A monotonic selection algorithms is one that respects the "survival-of-the-
fittest" heuristic. A strictly monotonic selection algorithm assigns a higher
expectation of reproduction to more knowledge structures with more deserv-
ing fitness values. For example, proportional selection and rank selection are



both strictly monotonic, whereas threshold selection is monotonic but not
strict, since it may assign the same number of offspring to knowledge struc-
tures with different fitness values. Finally, we say that a GA is admissible if
its fitness function and selection algorithm are both monotonic. A GA is
strict iff its fitness function and selection algorithm are both strictly mono-
tonic.

The main results in (Grefenstette, 1991a) relate the dynamic behavior of
monotonic and strict genetic algorithms to the notion of partial domination
of one set by another. Consider two arbitrary subsets of the solution space, A
and B. Let the representatives of subset A in the population at time t be

A (t) = < a1 , a2 ,  . . .  , an >

sorted3 such that u (ai) ≥ u(ai +1) for 1 ≤ i < n. Let the representatives of
subset B at time t be

B (t) = < b1 , b2 ,  . . .  , bn >

also sorted in order of decreasing u. Finally, we say B partially dominates A
(A <p B) at time t iff

u (ai) ≤ u (bi)  for 1 ≤ i ≤ n

and at least one inequality is strict. Intuitively, if A <p B, then B is ‘‘better’’
than A in the sense that each representative of B is at least as good as the
corresponding representative of A.4 Given these definitions, it can be shown
that if set A is partially dominated by set B within a given population, then
the proportion of the population allocated to set B grows at least as fast as
the proportion allocated to set A, in any admissible GA. Furthermore, in any
strict GA, the proportion allocated to set B grows strictly faster than the pro-
portion allocated to set A.

One illustration of this result is shown in Figure 2. Let set A be the
points in the space with objective function values between the dotted lines.
Let set B be the points in the space with objective values above the region
between the dotted lines. Then, in any population that contains points from
both set A and set B, the number of offspring allocated to B by any strict GA
________________

3 We assume without loss of generality that we are maximizing u.
4 These definitions can be extended in a natural way to cover the case where A (t ) and

B (t ) have differing cardinalities (Grefenstette, 1991a). If A (t ) is smaller than B (t ), we
augment A(t ) by adding copies of the best representative of A. If B (t ) is smaller than A (t ),
we augment B(t ) by adding copies of the worst representative of B.
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Figure 2: Two Regions Defined by Range of Objective Values

grows strictly faster than the number allocated to set A, since any subset of B
dominates any subset of A. The effect of this strategy, compounded over
succeeding generations, is that the search effort allocated to set B will grow
exponentially faster than the search effort allocated to set A. This is a highly
plausible heuristic, and in some cases is the optimal adaptive strategy (Hol-
land, 1975). This example illustrates implicit parallelism because it holds no
matter where the dotted lines are drawn. The contribution of this new
analysis is to extend Holland’s original result, which applied only to a partic-
ular form of genetic algorithm, to the entire class of admissible genetic algo-
rithms. The result is independent of the precise fitness function or selection
algorithm, as long as they satisfy the requirement of admissibility (or strict-
ness). These results provide new insights into the common characteristics of
genetic search algorithms.

ANALYSIS OF CROSSOVER

The analysis in the previous section refers exclusively to the distribution of
search effort resulting from the selection, or reproduction, phase of the
genetic algorithm. The selection phase is followed by operations that create
modified structures from the selected parent structures. There are usual two
distinct forms of structural alteration: crossover and mutation. Crossover
refers to operations in which pairs of selected knowledge structures
exchange information, producing new structures that inherit similarities from



both parents. In contrast, mutation operations apply to individual structures
to create small variations in the newly formed structures. Without crossover
and mutation, the population in a genetic algorithm would quickly converge
to multiple copies of the most fit structure in the initial population. With
crossover and mutation, genetic algorithms combine the focus of attention,
or exploitation, provided by selection with exploration of new structures
created by these idealized genetic operators. In order to gain a complete pic-
ture of the operation of a genetic algorithm, it is necessary to complement
our previous analysis of the selection phase with an analysis of the effects of
the crossover and mutation operators on the search. Since mutations gen-
erally play a relatively minor role as a background search operator in genetic
algorithms, our recent efforts have focused on the more dominant crossover
operators.

As in the case of fitness functions and selection algorithms, there have
been an interesting variety of crossover operators developed for genetic
algorithms. Traditionally, genetic algorithms have relied upon 1-point or 2-
point crossover operators. Many recent empirical studies, however, have
shown the benefits of higher numbers of crossover points. Syswerda (1989)
introduced a "uniform" crossover operator in which the allele (i.e., gene
value) of any position in an offspring was determined by a random selection
from the corresponding alleles of the two parents. He provided an initial
analysis of the disruptive effects of uniform crossover, and compared it with
both 1-point and 2-point crossover. He presented some provocative results
suggesting that, in spite of higher disruption properties, uniform crossover
can exhibit better recombination behavior, which can improve empirical per-
formance. One of the goals of our analysis has been to better understand the
effects of these various crossover operators.

Holland (1975) provided the initial formal analysis of the behavior of
GAs by characterizing how they bias the makeup of new offspring in
response to feedback on the fitness of previously generated individuals.
More specifically, let H be a hyperplane in the representation space. For
example, if the structures are represented by six binary features, then the
hyperplane denoted by H = 0# 1### consists of all structures in which the
first feature is absent and the third feature is present. The order of a hyper-
plane is the number of features that are defined as either 0 or 1. For example,
the hyperplane H specified above is a 2nd-order hyperplane. By focusing on
hyperplane subspaces of L-dimensional spaces, Holland showed that the
expected number of samples (individuals) allocated to a particular kth order
hyperplane Hk at time t + 1 is given by:



m (Hk,t +1) ≥ m (Hk,t) * 
f
_

f (Hk)______ * (1 − Pmk  − PcPd(Hk) )

In this expression, (Hk) is the average fitness of the current samples allocated
to Hk, f

_
is the average fitness of the current population, Pm is the probability

of using the mutation operator, Pc is the probability of using the crossover
operator, and Pd(Hk) is the probability that the crossover operator will be
"disruptive" in the sense that the children produced will not be members of
the same subspace as their parents. The usual interpretation of this result is
that subspaces with higher than average payoffs will be allocated exponen-
tially more trials over time, while those subspaces with below average
payoffs will be allocated exponentially fewer trials. This assumes that there
are enough samples to provide reliable estimates of hyperplane fitness, and
that the effects of crossover and mutation are not too disruptive. The effects
of mutation are generally insignificant in practice and may be neglected in a
first-order analysis. Considerable attention has been given to estimating Pd ,
the probability that a particular application of crossover will be disruptive.

Holland (1975) provided a simple and intuitive analysis of the disrup-
tion of 1-point crossover: as long as the crossover point does not occur
within the defining boundaries of Hk (i.e., in between any of the k fixed
defining positions), the children produced from parents in Hk will also reside
in Hk. De Jong (1975) extended this analysis to n-point crossover by noting
that no disruption can occur if there is an even number of crossover points
(including 0) between each of the defining positions of a hyperplane. De
Jong’s original analysis applied to the special case of 2nd-order hyperplanes,
i.e., hyperplanes with exactly two defining positions. This analysis was
extended by Spears and De Jong (1991a) to arbitrary higher-order hyper-
planes. A result of the general analysis for the particular case of 3rd-order
hyperplanes is shown in Figure 3. The term P3,even is the probability there is
an even number of crossover points (including 0) between each of the
defining positions of a 3rd-order hyperplane. The number of crossover
points is indicated by n. These results show that by choosing an even
number of crossover points, we can reduce the representational bias of cross-
over, in the sense that the influence of defining length on the disruption of
hyperplanes declines as the number of crossover points increases. However,
this reduction in bias comes at the expense of increasing the disruption of the
shorter definition length hyperplanes. If we interpret the area above a partic-
ular curve as measure of the cumulative disruption potential of its associated
crossover operator, then these curves suggest that 2-point crossover is the
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Figure 3: Pk,even on 3rd-Order Hyperplanes

best as far as minimizing disruption. This confirms De Jong’s original
analysis, and much of the standard practice in the field.

This line of analysis may be overly conservative in the sense that it
assumes a worst case scenario: the parents are assumed to be complementary
strings, differing at every position along the chromosome. As a result, the
Pk,even curves are very weak bounds on Pd. A more realistic bound on the
disruption caused by crossover requires a better estimate of the true disrup-
tion probability Pd. The primary reason for the weakness of the Pk,even
bound is that it ignores the fact that many of the cases in which an odd
number of crossover points fall between hyperplane defining positions are
not disruptive to the sampling process. This occurs whenever the second
parent happens to have identical alleles on the hyperplane defining positions
which are exchanged by "odd" crossovers. (Note that an "odd" crossover
occurs when an odd number of crossover points falls within two adjacent
defining positions of the hyperplane.) Deriving an expression for the proba-
bility that both parents will share common alleles on the defining positions of
a particular hyperplane is difficult in general because of the complexity of
the population dynamics. We can, however, get a feeling for the effects of
shared alleles on disruption by making the following simplifying
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Figure 4: Pk,s on 3rd-Order Hyperplanes with Peq = 0.5

assumption: the probability Peq of two parents sharing an allele is constant
across all loci. With this assumption we can generalize Pk,even to Pk,s (i.e.,
the probability of survival  ) by including "odd" crossovers which are not dis-
ruptive. Figure 4 shows the effects of counting the non-disruptive "odd"
crossovers, assuming a value of Peq  = 0.5, which is likely to hold in the early
generations when matches are least likely. Note that the amount of expected
disruption has been significantly reduced, compared to Figure 3, and the
relative difference in disruption among different numbers of crossover points
is reduced as well. At the same time, note that the curves for the various
number of crossover points have held their relative position with respect to
one another.

In (Spears and De Jong, 1991b), a similar analysis is applied to uniform
crossover. The results show that, as expected, uniform crossover eliminates
all representational bias, yielding a horizontal line in graphs like Figure 4.
The precise location of the line depends upon P 0, the probability of swap-
ping at any one position. The higher the value of P0, the lower the horizon-
tal curve in Figure 4 and the higher the rate of disruption. A value of
P0 = 0.2 can be shown to produce roughly the same overall disruption as 2-
point crossover. In summary, this analysis highlights three important



properties of uniform crossover. The first is the ease with which the disrup-
tive effect of uniform crossover can be precisely controlled by varying P 0.
The second important property is that the disruptive potential of uniform
crossover is independent of the defining length of hyperplanes. This allows
uniform crossover to perform equally well, regardless of the distribution of
important genes. Finally, when disruption does occur, it can be shown (De
Jong and Spears, 1992) that uniform crossover results in a minimally biased
exploration of the search space. We are currently extending these results
toward a more complete theory for recombination operators. Our goal is to
understand these interactions well enough to design genetic algorithms that
can make adaptive decisions about the proper balance between exploration
and exploitation.

MACHINE LEARNING WITH GENETIC ALGORITHMS

We have been using the powerful adaptive search strategies embodied in
genetic algorithms to design and implement a variety of performance-
oriented learning systems. The general context is one in which the environ-
ment defines one or more tasks to be performed, and the learning problem
involves both skill acquisition (how to perform a task) and skill refinement
(improving task performance). The approach taken is to identify a set of
structures which control the performance aspects of the system, and to use a
genetic algorithm to search the space of admissible structures to find ones
that result in good performance on the tasks to be learned.

The projects described in the following sections fall into two general
categories based on the space of admissible structures being searched. The
SAMUEL and GABIL systems search the space of admissible production
rules for sets of rules which solve difficult sequential decision problems and
concept classification tasks. The applications of GAs to NP-complete prob-
lems and neural networks takes a more parameterized system point of view.
Here the performance of the problem solved is controlled by a fixed set of
predefined parameters, and GAs are used to search the associated parameter
space for combinations of parameters which result in good performance.
Each of these projects is described in more detail in the following sections.



Competition-Based Learning for Sequential Decision Tasks

When the behavior of a rule-based system can be tested in a simulated
environment, it becomes possible to consider generating and testing sets of
rules off-line before they are used in the real task domain. The behavior of a
set of rules can be monitored in a simulation to discover any weaknesses or
inadequacies. We are investigating techniques that allow a learning system
to actively explore alternative behaviors in simulation, and to construct high
performance rules from this experience. If we can design a payoff function
that quantitatively measures the performance of the system with a given rule
set, we can then view the learning process as a heuristic optimization prob-
lem, i.e., a search through a space of knowledge structures looking for struc-
tures that lead to high performance. Our research is currently focused on
learning rules for a variety of tactical scenarios, using genetic algorithms as
the method for exploring the space of possible rule sets.

Our approach has been implemented in a system called SAMUEL (Gre-
fenstette and Cobb, 1991). The primary features of SAMUEL are:

• A restricted but high level rule language;

• Partial matching;

• Utility-driven conflict resolution;

• Numeric credit assignment at the level of individual rules; and

• Genetic learning at the level of rule sets.

The system is described in detail in (Grefenstette, Ramsey and Schultz,
1990). We have experimented with SAMUEL on a variety of tasks involving
multiple-agent environments, including evading a predator, stalking a prey,
and dog-fighting. SAMUEL has been able to learn high performance stra-
tegies for each of these tasks. In this section, we will briefly describe a
number of recent studies on this approach. The reader is referred to the pub-
lished articles for more complete details.

The foundations for SAMUEL can be traced to the analysis of the credit
assignment problem in (Grefenstette, 1988). The credit assignment problem
arises when long sequences of rules fire between successive external
rewards. It can be shown that the two distinct approaches to rule learning
with genetic algorithms each offer a useful solution to a different level of the
credit assignment problem. Analytic and experimental results are presented
that support the hypothesis that multiple levels of credit assignment, at both
the levels of the individual rules and at the level of rule sets, can improve the
performance of rule learning systems based on genetic algorithms. These



multiple levels are both present in SAMUEL.

One focus of our experimental work has been the robustness the rules
learned in simulated environments. Robustness can be measured by testing
the learned rules in new environments that have been systematically altered
from the simulation environment in which the rules were learned. For exam-
ple, either the learning environment or the target environment may contain
noise. Experiments reported in (Ramsey, Schultz, and Grefenstette, 1990)
examine the effect of learning tactical plans without noise and then testing
the plans in a noisy environment, and the effect of learning plans in a noisy
simulator and then testing the plans in a noise-free environment. Empirical
results show that, while best results are obtained when the training model
closely matches the target environment, using a training environment that is
more noisy than the target environment is better than using a training
environment that has less noise than the target environment.

One of the interesting aspects of SAMUEL is that it employs a symbolic,
attribute-value rule language, rather than the low-level representations
adopted by many genetic algorithm-based systems. The use of a symbolic
rule language in SAMUEL is intended to facilitate the incorporation of tradi-
tional machine learning methods into the system where appropriate. The
rule language in SAMUEL also makes it easier to incorporate existing
knowledge, whether acquired from experts or by symbolic learning pro-
grams. In (Schultz and Grefenstette, 1990), the use of available heuristic
domain knowledge to initialize the population to produce better plans is
investigated, and two methods for initialization of the knowledge base are
empirically compared. These results provide an interesting contrast with
most published work on genetic algorithms, which usually assume tabula
rasa initial conditions. The results presented here show that genetic algo-
rithms can be used to improve partially correct decision rules, as well as to
learn rules from scratch.

The use of a high-level language also facilitates the explanation of the
learned rules. Gordon (1991a, 1991b) describes a method for improving the
comprehensibility, accuracy, and generality of reactive plans learned by
genetic algorithms. The method involves two phases: (1) formulate explana-
tions of execution traces, and (2) generate new reactive rules from the expla-
nations. The explanation phase involves translating the execution trace of a
reactive planner into an abstract language, and then using Explanation Based
Learning to identify general strategies within the abstract trace. The rule
generation phase consists of taking a subset of the explanations and using
these explanations to generate a set of new reactive rules to add to the



original set for the purpose of performance improvement. The particular
subset of the explanations that is chosen yields rules that provide new
domain knowledge for handling knowledge gaps in the original rule set. The
original rule set, in a complimentary manner, provides expertise to fill the
gaps where the domain knowledge provided by the new rules is incomplete.

Genetic algorithms gain much of their power from mechanisms derived
from the field of population genetics. However, it is possible, and in some
cases desirable, to augment the standard mechanisms with additional
features not available in biological systems. In (Grefenstette, 1991b), we
examine the use of Lamarckian learning operators in the SAMUEL architec-
ture. The operators are Lamarckian in the sense that strategies are modified
through the addition or deletion of rules, based on the experience of the stra-
tegy in the test environment. These changes are then passed along as
"genetic material" to subsequent generations of strategies. The use of this
mechanism is illustrated on three tasks in multi-agent environments.

Cobb and Grefenstette (1991) explore the effect of explicitly searching
for the persistence of each decision in a time-dependent sequential decision
task. Prior studies showed the effectiveness of SAMUEL in solving a simula-
tion problem where an agent learns how to evade a predator that is in pursuit.
In the previous work, an agent applies a control action at each time step.
This paper examines a reformulation of the problem: the agent learns not
only the level of response of a control action, but also how long to apply that
control action. By examining this problem, the work shows that it is
appropriate to choose a representation of the state space that compresses
time information when solving a time-dependent sequential decision prob-
lem. By compressing time information, critical events in the decision
sequence become apparent.

We have begun to apply the SAMUEL approach to more complex learn-
ing environments. In (Schultz, 1991), SAMUEL is used to learn high-
performance reactive strategies for navigation and collision avoidance. The
task domain requires an autonomous underwater vehicle to navigate through
a randomly generated, dense mine field and then rendezvous with a station-
ary object. The vehicle has a limited set of sensors, including sonar, and can
set its speed and direction. The strategy that is learned is expressed as a set
of reactive rules, (i.e. stimulus-response rules) that map sensor readings to
actions to be performed at each decision time-step. Simulation results
demonstrate that an initial, human-designed strategy which has an average
success rate of only eight percent on randomly generated mine fields can be
improved by this system so that the final strategy can achieve a success rate



of 96 percent. This study provides encouraging evidence that this approach
to machine learning may scale up to realistic problems. We will continue to
advance these techniques, with the intention of exploring possible applica-
tions to laboratory robots and Navy research vehicles in the near future.

Genetic Algorithms for Concept Learning

Genetic algorithms (GAs) have traditionally been used for non-symbolic
learning tasks. In (Spears and De Jong, 1990a) we consider the application
of a GA to a symbolic learning task, supervised concept learning from exam-
ples. A GA concept learner (GABIL) is implemented that learns a concept
from a set of positive and negative examples. The performance of the system
is measured on a set of concept learning problems and compared with the
performance of two existing systems: ID5R and C4.5. Preliminary results
support that, despite minimal system bias, GABIL is an effective concept
learner and is quite competitive with ID5R and C4.5 as the target concept
increases in complexity. In (Spears and Gordon, 1991) we identify strategies
responsible for the success of these concept learners. We then implement a
subset of these strategies within GABIL to produce a multistrategy concept
learner. Finally, this multistrategy concept learner is further enhanced by
allowing the GAs to adaptively select the appropriate strategies.

GA and Neural Nets

Genetic algorithms and neural nets (NNs) have been used as heuristics for
some NP-Complete problems. Unfortunately, the results have been mixed
because NP-Complete problems are not equivalent with respect to how well
they map onto NN (or GA) representations. The Traveling Salesman Problem
is a classic example of a problem that does not map naturally to either NNs
or GAs. Suppose we are able to identify an NP-complete problem that has
an effective representation in the methodology of interest (GAs or NNs) and
develop an efficient problem solver for that particular case. Other NP-
complete problems which do not have effective representations can then be
solved by transforming them into the canonical problem, solving it, and
transforming the solution back to the original one. Spears and De Jong
(1990b) outline GA and NN paradigms that solve boolean satisfiability
(SAT) problems, and uses Hamiltonian circuit problems to illustrate how
either paradigm can be used to solve other NP-Complete problems after they
are transformed into equivalent SAT problems. Initial empirical results are



presented which indicate that although both paradigms are effective for solv-
ing SAT problems, the GA paradigm may be superior for more complex
boolean expressions.

Recently, genetic algorithms have been used to design neural network
modules and their control circuits. In these studies, a genetic algorithm
without crossover outperformed a genetic algorithm with crossover. Spears
and Anand (1991) re-examine these studies, and conclude that the results
were caused by an inadequate population size. New results are presented that
illustrate the effectiveness of crossover when the population size is adequate.

CURRENT DIRECTIONS

Each phase of the research described here has suggested areas for further
study. The analysis of the effects of the fitness function and selection algo-
rithms have addressed only the broadest differences among the alternatives.
Future analysis could focus on the issue of sensitivity of the fitness functions
and selection algorithms. For example, genetic algorithms with linear fitness
functions and proportional selection are highly sensitive to the objective
function. That is, large differences in objective function values are reflected
as large differences in growth rates. The use of dynamic scaling fitness func-
tions reducing sensitivity. Rank-based selection schemes reduce sensitivity
to the objective function even more. Empirical studies have shown a general
correlation between convergence and sensitivity that should be explored in a
more formal setting. It is not clear that more sensitivity is necessarily better.
Given that genetic algorithms will often be used to optimize a surface with
unknown properties, the genetic algorithm designer should be prepared to
use algorithms with the appropriate sensitivity for the application at hand.
We conjecture that, given appropriate formal definitions of sensitivity,
theorems similar to those in (Grefenstette, 1990b) could be developed to
characterize the searches performed by various sub-classes of admissible
genetic algorithms distinguished by the sensitivity of the selection algorithm.

We will continue the analysis of crossover by focusing in "construction
theory", the dual to the disruption theory reported here. Construction theory
refers to the analysis of how effectively various crossover operators can build
more elaborated structures from the patterns existing in the population.
Understanding the constructive effects of crossover is a key element in
understanding genetic algorithms.



Our machine learning applications of genetic algorithms will continue
to explore the use of traditional, symbolic machine learning operators (e.g.,
specialization, generalization, etc.) as mutation operators within the genetic
framework of SAMUEL. The approach is currently being tested on more
challenging, multi-agent tasks, including tasks that require the cooperative
efforts of several learning agents. Based on the rate of progress to date, we
expect to see continued progress toward the development of practical
machine learning systems that exploit the power of genetic algorithms.
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